Author:
Klimczyk Witold Artur,Goraj Zdobyslaw Jan
Abstract
PurposeThe purpose of this paper is to present a method for analysis and optimization of morphing wing. Moreover, a numerical advantage of morphing airfoil wing, typically assessed in simplified two-dimensional analysis is found using higher fidelity methods.Design/methodology/approachBecause of multi-point nature of morphing wing optimization, an approach for optimization by analysis is presented. Starting from naïve parametrization, multi-fidelity aerodynamic data are used to construct response surface model. From the model, many significant information are extracted related to parameters effect on objective; hence, design sensitivity and, ultimately, optimal solution can be found.FindingsThe method was tested on benchmark problem, with some easy-to-predict results. All of them were confirmed, along with additional information on morphing trailing edge wings. It was found that wing with morphing trailing edge has around 10 per cent lower drag for the same lift requirement when compared to conventional design.Practical implicationsIt is demonstrated that providing a smooth surface on wing gives substantial improvement in multi-purpose aircrafts. Details on how this is achieved are described. The metodology and results presented in current paper can be used in further development of morphing wing.Originality/valueMost of literature describing morphing airfoil design, optimization or calculations, performs only 2D analysis. Furthermore, the comparison is often based on low-fidelity aerodynamic models. This paper uses 3D, multi-fidelity aerodynamic models. The results confirm that this approach reveals information unavailable with simplified models.
Reference17 articles.
1. A review of morphing aircraft;Journal of Intelligent Material Systems and Structures,2011
2. Multilevel variable fidelity optimization of a morphing unmanned aerial vehicle,2004
3. Morphing unmanned aerial vehicles;Smart Materials and Structures,2011
4. Design challenges associated with development of a new generation UAV;Aircraft Engineering and Aerospace Technology,2005
5. Mini UAV design and optimization for long endurance mission,2008
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献