Deep and machine learning approaches for forecasting the residual value of heavy construction equipment: a management decision support model

Author:

Alshboul OdeyORCID,Shehadeh AliORCID,Al-Kasasbeh Maha,Al Mamlook Rabia Emhamed,Halalsheh Neda,Alkasasbeh Muna

Abstract

PurposeHeavy equipment residual value forecasting is dynamic as it relies on the age, type, brand and model of the equipment, ranking condition, place of sale, operating hours and other macroeconomic gauges. The main objective of this study is to predict the residual value of the main types of heavy construction equipment. The residual value of heavy construction equipment is predicted via deep learning (DL) and machine learning (ML) approaches.Design/methodology/approachBased on deep and machine learning regression network integrated with data mining, random forest (RF), decision tree (DT), deep neural network (DNN) and linear regression (LR)-based modeling decision support models are developed. This research aims to forecast the residual value for different types of heavy construction equipment. A comprehensive investigation of publicly accessible auction data related to various types and categories of construction equipment was utilized to generate the model's training and testing datasets. In total, four performance metrics (i.e. the mean absolute error (MAE), mean squared error (MSE), the mean absolute percentage error (MAPE) and coefficient of determination (R2)) were used to measure and compare the developed algorithms' accuracy.FindingsThe developed algorithm's efficiency has been demonstrated by comparing the deep and machine learning predictions with real residual value. The accuracy of the results obtained by different proposed modeling techniques was comparable based on the performance evaluation metrics. DT shows the highest accuracy of 0.9111 versus RF with an accuracy of 0.8123, followed by DNN with an accuracy of 0.7755 and the linear regression with an accuracy of 0.5967.Originality/valueThe proposed novel model is designed as a supportive tool for construction project managers for equipment selling, purchasing, overhauling, repairing, disposing and replacing decisions.

Publisher

Emerald

Subject

General Business, Management and Accounting,Building and Construction,Architecture,Civil and Structural Engineering

Reference48 articles.

1. Inflation and farm tractor replacement in the US: a simulation model;American Journal of Agricultural Economics,1979

2. Mining data to design value: a demonstrator in early design,2017

3. Betts, M. and Farrell, S. (2009), Global Construction 2020 : A Global Forecast for the Construction Industry Over the Next Decade, Global Construction Perspectives and Oxford Economics, London.

4. Remaining value functions for farm equipment;Applied Engineering in Agriculture,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3