The configurational effects of artificial intelligence-based hiring decisions on applicants' justice perception and organisational commitment

Author:

Yu JunORCID,Ma ZhengcongORCID,Zhu Lin

Abstract

PurposeThis study aims to investigate the configurational effects of five rules – artificial intelligence (AI)-based hiring decision transparency, consistency, voice, explainability and human involvement – on applicants' procedural justice perception (APJP) and applicants' interactional justice perception (AIJP). In addition, this study examines whether the identified configurations could further enhance applicants' organisational commitment (OC).Design/methodology/approachDrawing on the justice model of applicants' reactions, the authors conducted a longitudinal survey of 254 newly recruited employees from 36 Chinese companies that utilise AI in their hiring. The authors employed fuzzy-set qualitative comparative analysis (fsQCA) to determine which configurations could improve APJP and AIJP, and the authors used propensity score matching (PSM) to analyse the effects of these configurations on OC.FindingsThe fsQCA generates three patterns involving five configurations that could improve APJP and AIJP. For pattern 1, when AI-based recruitment with high interpersonal rule (AI human involvement) aims for applicants' justice perception (AJP) through the combination of high informational rule (AI explainability) and high procedural rule (AI voice), there must be high levels of AI consistency and AI voice to complement AI explainability, and only this pattern of configurations can further enhance OC. In pattern 2, for the combination of high informational rule (AI explainability) and low procedural rule (absent AI voice), AI recruitment with high interpersonal rule (AI human involvement) should focus on AI transparency and AI explainability rather than the implementation of AI voice. In pattern 3, a mere combination of procedural rules could sufficiently improve AIJP.Originality/valueThis study, which involved real applicants, is one of the few empirical studies to explore the mechanisms behind the impact of AI hiring decisions on AJP and OC, and the findings may inform researchers and managers on how to best utilise AI to make hiring decisions.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3