Aerodynamic shape design using hybrid evolutionary computing and multigrid-aided finite-difference evaluation of flow sensitivities

Author:

Catalano Luciano Andrea,Quagliarella Domenico,Vitagliano Pier Luigi

Abstract

Purpose – The purpose of this paper is to propose an accurate and efficient technique for computing flow sensitivities by finite differences of perturbed flow fields. It relies on computing the perturbed flows on coarser grid levels only: to achieve the same fine-grid accuracy, the approximate value of the relative local truncation error between coarser and finest grids unperturbed flow fields, provided by a standard multigrid method, is added to the coarse grid equations. The gradient computation is introduced in a hybrid genetic algorithm (HGA) that takes advantage of the presented method to accelerate the gradient-based search. An application to a classical transonic airfoil design is reported. Design/methodology/approach – Genetic optimization algorithm hybridized with classical gradient-based search techniques; usage of fast and accurate gradient computation technique. Findings – The new variant of the prolongation operator with weighting terms based on the volume of grid cells improves the accuracy of the MAFD method for turbulent viscous flows. The hybrid GA is capable to efficiently handle and compensate for the error that, although very limited, is present in the multigrid-aided finite-difference (MAFD) gradient evaluation method. Research limitations/implications – The proposed new variants of HGA, while outperforming the simple genetic algorithm, still require tuning and validation to further improve performance. Practical implications – Significant speedup of CFD-based optimization loops. Originality/value – Introduction of new multigrid prolongation operator that improves the accuracy of MAFD method for turbulent viscous flows. First application of MAFD evaluation of flow sensitivities within a hybrid optimization framework.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3