Tangential inlet cyclone separators with low solid loading

Author:

Amirante Riccardo,Tamburrano PaoloORCID

Abstract

Purpose The purpose of this paper is to propose an effective methodology for the industrial design of tangential inlet cyclone separators that is based on the fully three-dimensional (3D) simulation of the flow field within the cyclone coupled with an effective genetic algorithm. Design/methodology/approach The proposed fully 3D computational fluid dynamics (CFD) model makes use of the Reynold stress model for the accurate prediction of turbulence, while the particle trajectories are simulated using the one-way coupling discrete phase, which is a model particularly effective in case of low concentration of dust. To validate the CFD model, the numerical predictions are compared with experimental data available in the scientific literature. Eight design parameters were chosen, with the two objectives being the minimization of the pressure drop and the maximization of the collection efficiency. Findings The optimization procedure allows the determination of the Pareto Front, which represents the set of the best geometries and can be instrumental in taking an optimal decision in the presence of such a trade-off between the two conflicting objectives. The comparison among the individuals belonging to the Pareto Front with a more standard cyclone geometry shows that such a CFD global search is very effective. Practical implications The proposed procedure is tested for specific values of the operating conditions; however, it has general validity and can be used in place of typical procedures based on empirical models or engineers’ experience for the industrial design of tangential inlet cyclone separators with low solid loading. Originality/value Such an optimization process has never been proposed before for the design of cyclone separators; it has been developed with the aim of being both highly accurate and compatible with the industrial design time.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3