Aggregating social media data with temporal and environmental context for recommendation in a mobile tour guide system

Author:

Meehan Kevin,Lunney Tom,Curran Kevin,McCaughey Aiden

Abstract

Purpose Manufacturers of smartphone devices are increasingly utilising a diverse range of sensors. This innovation has enabled developers to accurately determine a user’s current context. One area that has been significantly enhanced by the increased use of context in mobile applications is tourism. Traditionally, tour guide applications rely heavily on location and essentially ignore other types of context. This has led to problems of inappropriate suggestions and tourists experiencing information overload. These problems can be mitigated if appropriate personalisation and content filtering is performed. This research proposes an intelligent context-aware recommender system that aims to minimise the highlighted problems. Design/methodology/approach Intelligent reasoning was performed to determine the weight or importance of different types of environmental and temporal context. Environmental context such as the weather outside can have an impact on the suitability of tourist attractions. Temporal context can be the time of day or season; this is particularly important in tourism as it is largely a seasonal activity. Social context such as social media can potentially provide an indication of the “mood” of an attraction. These types of contexts are combined with location data and the context of the user to provide a more effective recommendation to tourists. The evaluation of the system is a user study that utilised both qualitative and quantitative methods, involving 40 participants of differing gender, age group, number of children and marital status. Findings This study revealed that the participants selected the context-based recommendation at a significantly higher level than either location-based recommendation or random recommendation. It was clear from analysing the questionnaire results that location is not the only influencing factor when deciding on a tourist attraction to visit. Research limitations/implications To effectively determine the success of the recommender system, various combinations of contextual conditions were simulated. Simulating contexts provided the ability to randomly assign different contextual conditions to ensure an effective recommendation under all circumstances. This is not a reflection of the “real world”, because in a “real world” field study the majority of the contextual conditions will be similar. For example, if a tourist visited numerous attractions in one day, then it is likely that the weather conditions would be the same for the majority of the day, especially in the summer season. Practical implications Utilising this type of recommender system would allow the tourists to “go their own way” rather than following a prescribed route. By using this system, tourists can co-create their own experience using both social media and mobile technology. This increases the need to retain user preferences and have it available for multiple destinations. The application will be able to learn further through multiple trips, and as a result, the personalisation aspect will be incrementally refined over time. This extensible aspect is increasingly important as personalisation is gradually more effective as more data is collated. Originality/value This paper contributes to the body of knowledge that currently exists regarding the study of utilising contextual conditions in mobile recommender systems. The novelty of the system proposed by this research is the combination of various types of temporal, environmental and personal context data to inform a recommendation in an extensible tourism application. Also, performing sentiment analysis on social media data has not previously been integrated into a tourist recommender system. The evaluation concludes that this research provides clear evidence for the benefits of combining social media data with environmental and temporal context to provide an effective recommendation.

Publisher

Emerald

Subject

Computer Science Applications,Tourism, Leisure and Hospitality Management,Information Systems

Reference44 articles.

1. Building a context-aware mobile tourist guide system base on a service oriented architecture,2008

2. Towards a better understanding of context and context-awareness;Lecture Notes in Computer Science,1999

3. The Hawthorne effect: a reconsideration of the methodological artifact;Journal of Applied Psychology,1984

4. Context-aware recommender systems,2008

5. Alchemy API (2012), Alchemy API: Transforming Text Into Knowledge, available at: www.alchemyapi.com/ (accessed 10 July 2012).

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3