Twitter's capacity to forecast tourism demand: the case of way of Saint James

Author:

Mendieta-Aragón AdriánORCID,Navío-Marco Julio,Garín-Muñoz Teresa

Abstract

PurposeRadical changes in consumer habits induced by the coronavirus disease (COVID-19) pandemic suggest that the usual demand forecasting techniques based on historical series are questionable. This is particularly true for hospitality demand, which has been dramatically affected by the pandemic. Accordingly, we investigate the suitability of tourists’ activity on Twitter as a predictor of hospitality demand in the Way of Saint James – an important pilgrimage tourism destination.Design/methodology/approachThis study compares the predictive performance of the seasonal autoregressive integrated moving average (SARIMA) time-series model with that of the SARIMA with an exogenous variables (SARIMAX) model to forecast hotel tourism demand. For this, 110,456 tweets posted on Twitter between January 2018 and September 2022 are used as exogenous variables.FindingsThe results confirm that the predictions of traditional time-series models for tourist demand can be significantly improved by including tourist activity on Twitter. Twitter data could be an effective tool for improving the forecasting accuracy of tourism demand in real-time, which has relevant implications for tourism management. This study also provides a better understanding of tourists’ digital footprints in pilgrimage tourism.Originality/valueThis study contributes to the scarce literature on the digitalisation of pilgrimage tourism and forecasting hotel demand using a new methodological framework based on Twitter user-generated content. This can enable hospitality industry practitioners to convert social media data into relevant information for hospitality management.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3