Investigation of indoor air quality and thermal comfort condition in airport terminal buildings

Author:

Akyüz Mehmet Kadri,Kafali Hasim,Altuntas Onder

Abstract

Purpose This paper aims to measure the thermal comfort conditions and indoor air quality parameters, through on-site measurements taken in the areas mostly occupied by the passengers and airport staff. Terminal buildings consist of areas with various functions. Heating, ventilation and air conditioning requirements vary from area to area, thus leading to challenges in the management of indoor environment quality. Therefore, the study focuses on investigating the indoor environment conditions in various areas of the terminal buildings. Design/methodology/approach In this study, the thermal comfort and indoor air quality were evaluated based on the parameters [CO2 concentration, relative humidity, temperature, predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD)] collected for summer 2019 from different zones inside the International Dalaman Airport terminal building located in the southwest of Turkey. The measurements were performed in the areas mostly occupied by the airport staff and passengers (check-in area, security control areas, international departure lounge, domestic departure lounge and baggage claim hall). Findings As a result of the study, it was observed that the CO2 concentration was 480–965 ppm, the relative humidity was 51.9–75.8% and the temperature was in the range of 23.9°C–28.3°C inside the airport terminal. The PMV values were determined to be in the range of −0.23 to 0.67, and the PPD values 5–15%, which are used to measure the thermal comfort conditions. Originality/value There has been limited study on the determination of the indoor air quality in airport terminals and the investigation of the thermal comfort conditions. However, in this study, indoor air quality and thermal comfort conditions were determined by on-site measurements in the five mostly occupied areas by passengers and employees in the terminal building.

Publisher

Emerald

Subject

Aerospace Engineering

Reference31 articles.

1. ACI (2014), “Airport energy efficiency and management”, available at: www.aci-asiapac.aero/services/main/17/upload/service/17/self/55cc67d1e0443.pdf (accessed 11 June 2020).

2. The role of measurement accuracy on the thermal environment assessment by means of PMV index;Building and Environment,2011

3. Indoor and outdoor air quality: a university cafeteria as a case study;Atmospheric Pollution Research,2020

4. 62.1. 2007, Ventilation for Acceptable Indoor Air Quality;ASHRAE, A.N.S.I. and Standard, A.S.H.R.A.E,2007

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3