Measuring maintenance activity effectiveness

Author:

Rana Anil,Koroitamana Emosi V.M.

Abstract

Purpose The purpose of this paper is to provide a framework for measuring the imprecise and subjective “effectiveness” of a major maintenance activity. Such a measure will not only bring objectivity in gauging the effectiveness of maintenance task carried out by the workforce without any intervention from an expert but also help in measuring the slow degradation of the performance of the concerned major equipment/system. Design/methodology/approach The paper follows a three-step approach. First, identify a set of parameters considered important for estimating the maintenance activity effectiveness. Second, generate a set of data using expert opinions on a fuzzy performance measure of maintenance activity effectiveness (output). Also, find an aggregated estimate of the effectiveness by analysing the consensus among experts. This requires using a part of the “fuzzy multiple attribute decision making” process. Finally, train a neuro-fuzzy inference system based on input parameters and generated output data. Findings The paper analysed major maintenance activity carried out on diesel engines of a power plant company. Expert opinions were used in selection of key parameters and generation of output (effectiveness measure). The result of a trained adaptive neuro-fuzzy inference system (ANFIS) matched acceptably well with that aggregated through the expert opinions. Research limitations/implications In view of unavailability of data, the method relies on training a neuro-fuzzy system on data generated through expert opinion. The data as such are vague and imprecise leading to lack of consensus between experts. This can lead to some amount of error in the output generated through ANFIS. Originality/value The originality of the paper lies in presentation of a method to estimate the effectiveness of a maintenance activity.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Safety, Risk, Reliability and Quality

Reference28 articles.

1. A new fuzzy multi criteria model for maintenance policy;Middle-East Journal of Scientific Research,2011

2. Study of diesel engine vibration condition monitoring;Global Journal of Researches in Engineering,2015

3. Neuro-fuzzy systems for diagnosis;Fuzzy Sets and Systems,1997

4. Analysis of the relation between injection parameter variation and block vibration of an internal combustion diesel engine;Journal of Sound and Vibration,2006

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3