Convergence analysis of the nonlinear iterative method for two-phase flow in porous media associated with nanoparticle injection

Author:

El-Amin Mohamed,Kou Jisheng,Sun Shuyu

Abstract

Purpose This paper aims to introduce modeling, numerical simulation and convergence analysis of the problem of nanoparticles’ transport carried by a two-phase flow in a porous medium. The model consists of equations of pressure, saturation, nanoparticles’ concentration, deposited nanoparticles’ concentration on the pore-walls and entrapped nanoparticles concentration in pore-throats. Design/methodology/approach A nonlinear iterative IMPES-IMC (IMplicit Pressure Explicit Saturation–IMplicit Concentration) scheme is used to solve the problem under consideration. The governing equations are discretized using the cell-centered finite difference (CCFD) method. The pressure and saturation equations are coupled to calculate the pressure, and then the saturation is updated explicitly. Therefore, the equations of nanoparticles concentration, the deposited nanoparticles concentration on the pore walls and the entrapped nanoparticles concentration in pore throats are computed implicitly. Then, the porosity and the permeability variations are updated. Findings Three lemmas and one theorem for the convergence of the iterative method under the natural conditions and some continuity and boundedness assumptions were stated and proved. The theorem is proved by induction states that after a number of iterations, the sequences of the dependent variables such as saturation and concentrations approach solutions on the next time step. Moreover, two numerical examples are introduced with convergence test in terms of Courant–Friedrichs–Lewy (CFL) condition and a relaxation factor. Dependent variables such as pressure, saturation, concentration, deposited concentrations, porosity and permeability are plotted as contours in graphs, whereas the error estimations are presented in a table for different values of the number of time steps, number of iterations and mesh size. Research limitations/implications The domain of the computations is relatively small; however, it is straightforward to extend this method to the oil reservoir (large) domain by keeping similar definitions of CFL number and other physical parameters. Originality/value The model of the problem under consideration has not been studied before. Also, both solution technique and convergence analysis have not been used before with this model.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference43 articles.

1. Convergence of finite volume schemes for a degenerate convection–diffusion equation arising in flow in porous media;Computer Methods in Applied Mechanics and Engineering,2002

2. On convergence of finite volume schemes for one-dimensional two-phase flow in porous media;Journal of Computational and Applied Mathematics,2002

3. Characteristics of high-permeability zones using core analysis, and production logging data;Journal of Petroleum Science and Engineering,2007

4. Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences;SIAM Journal on Numerical Analysis,1997

5. Implicit-explicit methods for time-dependent partial differential equations;SIAM Journal on Numerical Analysis,1995

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3