Machine Learning Prediction of Nanoparticle Transport with Two-Phase Flow in Porous Media

Author:

El-Amin Mohamed12ORCID,Alwated Budoor1,Hoteit Hussein3ORCID

Affiliation:

1. College of Engineering, Effat University, Jeddah 21478, Saudi Arabia

2. Mathematics Department, Faculty of Science, Aswan University, Aswan 81528, Egypt

3. Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

Abstract

Reservoir simulation is a time-consuming procedure that requires a deep understanding of complex fluid flow processes as well as the numerical solution of nonlinear partial differential equations. Machine learning algorithms have made significant progress in modeling flow problems in reservoir engineering. This study employs machine learning methods such as random forest, decision trees, gradient boosting regression, and artificial neural networks to forecast nanoparticle transport with the two-phase flow in porous media. Due to the shortage of data on nanoparticle transport in porous media, this work creates artificial datasets using a mathematical model. It predicts nanoparticle transport behavior using machine learning techniques, including gradient boosting regression, decision trees, random forests, and artificial neural networks. Utilizing the scikit-learn toolkit, strategies for data preprocessing, correlation, and feature importance are addressed. Furthermore, the GridSearchCV algorithm is used to optimize hyperparameter tuning. The mean absolute error, R-squared correlation, mean squared error, and root means square error are used to assess the models. The ANN model has the best performance in forecasting the transport of nanoparticles in porous media, according to the results.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3