Flexible learning with multicomponent blended learning mode for undergraduate chemistry courses in the pandemic of COVID-19

Author:

Lo Chui-Man,Han Jie,Wong Emily S.W.,Tang Chin-Cheung

Abstract

Purpose This paper aims to report a case study in flexible learning with multicomponent blended learning mode in an undergraduate chemistry course. Traditional chemistry courses usually include lectures, tutorials and laboratory sections. For a course “Advances in Organic Synthesis” at undergraduate level, it consists of advanced information in organic chemistry such as reaction mechanisms, asymmetric catalysis, retrosynthesis and applications in synthesis of natural products. This course is a difficult subject and requires deep understanding of contents. After learning this course, students should have comprehensive knowledge in advanced strategies of organic synthesis and have an ability to apply them to real cases. This “flexible learning with multicomponent blended learning mode” was implemented by the authors to enhance student engagement and self-motivation in their studies. Design/methodology/approach The authors hoped to enhance students’ engagement in “flexible learning” – a mixed concept with “blended learning” and “flipped classroom” – and called this approach as “multicomponent blended learning mode.” Blended learning combines face-to-face and e-learning components with interactive Web-based components and technical experimental videos were developed. The knowledge integrated in different components provides a natural environment to link the different synthetic methods together, which help students to get a better understanding of the complicated knowledge and strengthen their skills. For flipped classroom, students participated in the case studies of the organic synthesis and shared their findings to other classmates in oral presentations. Findings In this study, both course evaluation score and students’ academic performance in the “multicomponent blended learning mode” were increased significantly when comparing with traditional teaching methods in 2011. It was found that students’ engagement and their self-motivation in learning were enhanced. Originality/value The positive feedback from the students and the enhancement of their academic performance supported the value in this research. Besides, most universities in Hong Kong have suspended all face-to-face classes and conducted all teaching in online mode during COVID-19 outbreak. As the multicomponent blended learning mode of this course has already been conducted for eight cohorts, the authors are confident that this feature can minimize the sudden change in the learning habits for the students. As social factors and individual variations in students’ learning and study mode may affect the learning outcomes, these interactive multicomponent e-learning components in this special period make students excited when they can study and digest the knowledge according to their own pace.

Publisher

Emerald

Subject

Education,Computer Science (miscellaneous)

Reference34 articles.

1. The design of multimedia blended e-learning systems: cultural considerations,2009

2. Constructing explanations in an active learning preparatory chemistry course;Journal of Chemical Education,2020

3. Flip your classroom reach every student in every class every day,2012

4. Development and use of online prelaboratory activities in organic chemistry to improve students’ laboratory experience;Journal of Chemical Education,2017

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3