Performance evaluation of direction-finding techniques of an acoustic source with uniform linear array

Author:

Uddin Syed Farid,Khan Ayan Alam,Wajid Mohd,Singh Mahima,Alam Faisal

Abstract

PurposeThe purpose of this paper is to show a comparative study of different direction-of-arrival (DOA) estimation techniques, namely, multiple signal classification (MUSIC) algorithm, delay-and-sum (DAS) beamforming, support vector regression (SVR), multivariate linear regression (MLR) and multivariate curvilinear regression (MCR).Design/methodology/approachThe relative delay between the microphone signals is the key attribute for the implementation of any of these techniques. The machine-learning models SVR, MLR and MCR have been trained using correlation coefficient as the feature set. However, MUSIC uses noise subspace of the covariance-matrix of the signals recorded with the microphone, whereas DAS uses the constructive and destructive interference of the microphone signals.FindingsVariations in root mean square angular error (RMSAE) values are plotted using different DOA estimation techniques at different signal-to-noise-ratio (SNR) values as 10, 14, 18, 22 and 26dB. The RMSAE curve for DAS seems to be smooth as compared to PR1, PR2 and RR but it shows a relatively higher RMSAE at higher SNR. As compared to (DAS, PR1, PR2 and RR), SVR has the lowest RMSAE such that the graph is more suppressed towards the bottom.Originality/valueDAS has a smooth curve but has higher RMSAE at higher SNR values. All the techniques show a higher RMSAE at the end-fire, i.e. angles near 90°, but comparatively, MUSIC has the lowest RMSAE near the end-fire, supporting the claim that MUSIC outperforms all other algorithms considered.

Publisher

Emerald

Reference34 articles.

1. Performance of MUSIC algorithm for DOA estimation,2016

2. Improved direction-of-arrival estimation of an acoustic source using support vector regression and signals correlation;Sensors,2021

3. Broadband variations of the MUSIC high-resolution method for sound source localization in robotics,2007

4. Binary sparse coding of convolutive mixtures for sound localization and separation via spatialization;IEEE Transactions on Signal Processing,2016

5. Support vector regression,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3