Improved Direction-of-Arrival Estimation of an Acoustic Source Using Support Vector Regression and Signal Correlation

Author:

Alam FaisalORCID,Usman MohammedORCID,Alkhammash Hend I.ORCID,Wajid MohdORCID

Abstract

The direction-of-arrival (DoA) estimation of an acoustic source can be estimated with a uniform linear array using classical techniques such as generalized cross-correlation, beamforming, subspace techniques, etc. However, these methods require a search in the angular space and also have a higher angular error at the end-fire. In this paper, we propose the use of regression techniques to improve the results of DoA estimation at all angles including the end-fire. The proposed methodology employs curve-fitting on the received multi-channel microphone signals, which when applied in tandem with support vector regression (SVR) provides a better estimation of DoA as compared to the conventional techniques and other polynomial regression techniques. A multilevel regression technique is also proposed, which further improves the estimation accuracy at the end-fire. This multilevel regression technique employs the use of linear regression over the results obtained from SVR. The techniques employed here yielded an overall 63% improvement over the classical generalized cross-correlation technique.

Funder

Taif University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Analysis of SVM-Based DOA Estimation for Uniform Linear Arrays;2023 IEEE 14th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON);2023-10-12

2. Multi-objective acoustic sensor placement optimization for crack detection of compressor blade based on reinforcement learning;Mechanical Systems and Signal Processing;2023-08

3. DOA estimation using GRNN for acoustic sensor arrays;Multidimensional Systems and Signal Processing;2023-04-19

4. Implementation of Real-Time Sound Source Localization using TMS320C6713 Board with Interaural Time Difference Method;2022 2nd International Seminar on Machine Learning, Optimization, and Data Science (ISMODE);2022-12-22

5. A novel sampling methodology exploiting the least correlated-columns for angle of arrival estimation;Physical Communication;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3