NOBLE GASES FINGERPRINT THE SOURCE AND EVOLUTION OF ORE-FORMING FLUIDS OF CARLIN-TYPE GOLD DEPOSITS IN THE GOLDEN TRIANGLE, SOUTH CHINA

Author:

Jin Xiao-Ye123,Hofstra Albert H.4,Hunt Andrew G.4,Liu Jian-Zhong35,Yang Wu6,Li Jian-Wei12

Affiliation:

1. School of Earth Resources, China University of Geosciences, Wuhan 430074, China

2. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China

3. Innovation Center of Ore Resources Exploration Technology in the Region of Bedrock, Ministry of Natural Resources of People’s Republic of China, Guiyang 550018, China

4. U.S. Geological Survey, P.O. Box 25046, Denver, Colorado 80225, USA

5. Guizhou Bureau of Geology and Mineral Exploration & Development, Guiyang 550018, China

6. School of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550003, China

Abstract

Abstract Precise constraints on the source and evolution of ore-forming fluids of Carlin-type gold deposits in the Golden Triangle (south China) are of critical importance for a better understanding of the ore genesis and a refined genetic model for gold mineralization. However, constraints on the source of ore fluid components have long been a challenge due to the very fine grained nature of the ore and gangue minerals in the deposits. Here we present He, Ne, and Ar isotope data of fluid inclusion extracts from a variety of ore and gangue minerals (arsenian pyrite, realgar, quartz, calcite, and fluorite) representing the main and late ore stages of three well-characterized major gold deposits (Shuiyindong, Nibao, and Yata) to provide significant new insights into the source and evolution of ore-forming fluids of this important gold province. Measured He isotopes have R/RA ratios ranging from 0.01 to 0.4 that suggest a maximum of 5% mantle helium with an R/RA of 8. The Ne and Ar isotope compositions are broadly comparable to air-saturated water, with a few analyses indicating the presence of an external fluid containing nucleogenic 38Ar and radiogenic 40Ar. Plotted on the 20Ne/4He vs. helium R/RA and 3He/20Ne vs. 4He/20Ne diagrams, the results define two distinct arrays that emanate from a common sedimentary pore fluid or deeply sourced metamorphic fluid end-member containing crustal He. The main ore-stage fluids are interpreted as a mixture of magmatic fluid containing mantle He and sedimentary pore fluid or deeply sourced metamorphic fluid with predominantly crustal He, whereas the late ore-stage fluids are a mixture of sedimentary pore fluid or deeply sourced metamorphic fluid bearing crustal He and shallow meteoric groundwater containing atmospheric He. Results presented here, when combined with independent evidence, support a magmatic origin for the ore-forming fluids. The ascending magmatic fluid mixed with sedimentary pore fluid or deeply sourced metamorphic fluid in the ore stage and subsequently mixed with the meteoric groundwater in the late ore stage, eventually producing the Carlin-type gold deposits in the Golden Triangle.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3