Large-scale basement mobilization endows the giant Carlin-type gold mineralization in the Youjiang Basin, South China: Insights from mercury isotopes

Author:

Gao Wei1,Hu Ruizhong12,Wang Xueyun12,Yin Runsheng1,Bi Xianwu1,Xie Zhuojun1,Fu Shanling1,Yan Jun1

Affiliation:

1. 1State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

2. 2College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The metal source and genesis of hydrothermal mercury-rich gold metallogenic systems occurring far away from active continental margins remain puzzling. The Youjiang Basin of South China, where exists numerous Carlin-type gold deposits and some synmineralization hidden intrusions, is a natural laboratory to address this issue due to it was up to 1000 km inward from the active continental margins of South China when mineralization. Here, we use mass-independent fractionation of mercury isotope ratios (reported as ∆199Hg), which is predominantly generated during Hg photochemical reactions on Earth’s surface and has superiority of isotopic inheritance during hydrothermal processes, to address the metal source of the Youjiang Carlin-type gold deposits. Ore-associated sulfides from seven representative deposits display negative to near-zero ∆199Hg values (−0.29‰ to 0.04‰), which fall in between that of the regional Precambrian basement rocks (−0.21‰ to 0.06‰) and deep magmatic-hydrothermal systems (∼0‰), suggesting a binary mixing of Hg from these two sources. An isotope mixing model and mass balance calculations demonstrate that ∼1000 km3 of the basement rocks, which contributed to 86% of Hg budget, were leached and remobilized by magmatic-hydrothermal fluids and deep-circulating crustal fluids to endow the gold reserves of these deposits. Given that traditional S, Pb, C, and O isotopic data yielded indirect and ambiguous constraints on metal source due to their complex evolution processes and isotope fractionation during the fluids ascended. Our results, therefore, highlight the great advantage of using Hg isotope as a new tracer to understand metal sources of hydrothermal deposits.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3