Depositional and Environmental Constraints on the Late Neoarchean Dagushan Deposit (Anshan-Benxi Area, North China Craton): An Algoma-Type Banded Iron Formation

Author:

Tong Xiaoxue123,Wang Changle123,Peng Zidong123,Li Yuhao4,Hao Weiduo4,Mänd Kaarel45,Robbins Leslie J.6,Zhang Lianchang123,Ke Qiang123,Zhai Mingguo123,Konhauser Kurt O.4

Affiliation:

1. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada

5. Department of Geology, University of Tartu, Tartu, Estonia

6. Department of Geology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada

Abstract

Abstract The late Neoarchean, ~2.53 to 2.51 Ga Dagushan banded iron formation (BIF), is a typical Algoma-type BIF located in the northeast part of the North China craton. Despite having undergone upper greenschist to lower amphibolite facies metamorphism, the Dagushan BIF retains evidence of varied depositional facies, making it an ideal archive to evaluate the paleomarine environment and the paragenesis of the ore minerals. A transition from oxide to silicate to carbonate facies BIF is evident in a northward direction. The mineralogical composition shifts from magnetite and quartz in the south through a magnetite-quartz-cummingtonite/stilpnomelane assemblage in the transition zone to magnetite-siderite in the north. Such a distinct distribution of mineralogical facies correlates well with the depositional environment of the BIF. The carbonate facies BIFs formed in a near-shore, proximal environment, whereas the oxide and silicate facies BIF assemblages formed in deeper waters, distal to the paleoshoreline. The BIF samples display characteristic seawater-like rare earth element + yttrium (REE + Y) profiles with positive La and Y anomalies and heavy REE enrichment relative to the light REEs when normalized to post-Archean Australian shale. Positive Eu anomalies suggest a high-temperature hydrothermal contribution to the BIF. The absence of a negative Ce anomaly in nearly all samples, coupled with positive δ56Fe in magnetite in all mineralogical facies, indicates a dominantly anoxic water column contemporaneous with deposition of the BIF. At ~2.53 Ga in the Anshan area, seawater was mostly anoxic and rich in ferrous iron. Dissolved ferrous iron in upwelling hydrothermal fluids was oxidized and precipitated as Fe(III) oxyhydroxides in the photic zone leading to BIF formation. Proximal to hydrothermal vents, magnetite formed via the reaction of Fe(III) oxyhydroxides and aqueous Fe(II) supplied from the hydrothermal fluids and microbial dissimilatory iron reduction (DIR) coupled to organic carbon oxidation. Proximal to a paleoshoreline, siderite formed through DIR, as evidenced by the depleted δ13C values and the presence of graphite. Silicates, such as stilpnomelane and cummingtonite, are considered to be the metamorphic products of early diagenetic silicates (e.g., nontronite) that formed in the water column from admixtures of Fe(III) oxyhydroxides and amorphous silica.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3