Modified magnetite and hydrothermal apatite in banded iron-formations and implications for high-grade Fe mineralization during retrogressive metamorphism

Author:

Shi Kangxing12ORCID,Wang Changming1,Bagas Leon13,Duan Hongyu1

Affiliation:

1. State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China

2. College of Earth Sciences, Hebei GEO University, Shijiazhuang 050031, China

3. Xi’an Center of China Geological Survey, Xi’an 710054, China

Abstract

Abstract Modified magnetite and hydrothermal apatite in banded iron formations (BIFs) are ideal minerals for studying hydrothermal and metamorphic processes and are applied to linking with high-grade Fe mineralization and metamorphism in iron deposits hosted by BIFs. In this study, we have investigated the geochemical composition of modified magnetite and hydrothermal apatite and in situ U-Pb geochronology on apatite from the Huogezhuang BIF-hosted Fe deposit in northeastern China. The magnetite in metamorphosed BIF is modified, locally fragmented, and forms millimeter-to micrometer-scale bands. The apatite is present surrounding or intergrowing with magnetite, has corroded surfaces, and contains irregular impurities and fluid inclusions, indicating that it has been partly hydrothermally altered. Original element compositions (e.g., Fe, Al, Ti, K, Mg, and Mn) of magnetite in BIFs have been modified during high-grade Fe mineralization and retrogressive metamorphism with temperature reduction and addition of acids. The hydrothermally altered apatite has been relatively reduced in the contents of Ca, P, F, La, Ce, Nd, δCe, δEu, and total REEs compared to non-altered apatite. The magnetite and apatite in low-grade BIFs are poorer in FeOT than those from the high-grade Fe ores, indicating that Fe is remobilized during the transition from BIFs to high-grade Fe ores. The magnetite and apatite in high-grade Fe ores are overgrown by greenschist-facies minerals formed during retrograde metamorphism, suggesting that the high-grade Fe mineralization may be related to retrogressive metamorphism. In situ U-Pb geochronology of apatite intergrown with magnetite and zircon LAICP-MS U-Pb dating at Huogezhuang deposit reveals that the BIF-hosted magnetite was altered and remobilized at ca. 1950–1900 Ma, and deposition of the BIF began during the Late Neoarchean. The changes of elements in the modified magnetite and different geochemical compositions of the altered and unaltered apatite confirm that the modified magnetite and hydrothermal apatite can be effective in tracing high-grade Fe mineralization and retrogressive metamorphism in BIFs.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3