Geological and Chronological Constraints on the Long-Lived Eocene Yulong Porphyry Cu-Mo Deposit, Eastern Tibet: Implications for the Lifespan of Giant Porphyry Cu Deposits

Author:

Chang Jia12,Li Jian-Wei12,Selby David3,Liu Jia-Cheng2,Deng Xiao-Dong1

Affiliation:

1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China

2. Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China

3. Department of Earth Sciences, Durham University, Durham DH1 3LE, United Kingdom

Abstract

Abstract The Yulong porphyry Cu-Mo deposit, the third largest porphyry Cu deposit in China, contains proven reserves of > 6.5 million metric tons (Mt) Cu and 0.4 Mt Mo. Previous radiometric dating studies have provided numerous ages for this deposit, but the timing and duration of the process governing the deposition of Cu and Mo remains not well constrained. In this paper, we first document multiple stages of mineralization and hydrothermal alteration associated with distinct magmatic pulses at Yulong by field and textural relationships, and then present high-precision molybdenite Re-Os ages of 14 quartz-molybdenite ± chalcopyrite veins representing these stages to precisely constrain the timing and duration of Cu-Mo mineralization. The ore-hosting Yulong composite stock consists of three successive porphyry intrusions: (1) monzonitic granite porphyry (MGP), (2) K-feldspar granite porphyry (KGP), and (3) quartz albite porphyry (QAP). The vein formation, Cu-Mo mineralization, and ore-related alteration are grouped into early, transitional, and late stages with respect to the intrusive history. The first two porphyry intrusions are followed by cyclical sequences of veining that are mainly associated with potassic alteration and have formed (1) ME vein/USTT, (2) EBE/T veins, (3) A1E/T veins, (4) A2E/BT veins, and (5) A3E/T veins. A2E/BT and A3E/T veins of the early and transitional stages are dominated by quartz and chalcopyrite ± pyrite, respectively, and represent the main Cu-Mo mineralization events. More than 80% of Cu and Mo at Yulong were deposited in the early stage with the remainder being formed in the transitional stage. The late-stage pyrite-quartz veins (DL), which are characterized by sericitic alteration halos, postdate the intrusion of QAP dikes and have no economic significance. Molybdenite Re-Os ages of A2E and BT veins indicate that sulfide deposition at Yulong was episodic over a prolonged history lasting over 5.13 ± 0.23 m.y. (1σ). However, the bulk Cu-Mo ores formed in a shorter time interval of 1.36 ± 0.24 m.y. (1σ) with most Cu precipitated in a more restricted timespan of 0.82 ± 0.24 m.y. (1σ) in the early stage. These results, combined with geochronologic data from porphyry copper deposits elsewhere, confirm that multiple magmatic-hydrothermal pulses with a lifespan of tens to hundreds of thousands of years are sufficient to form a giant porphyry copper deposit. Factors such as metal concentration, volume, and focusing efficiency of ore-forming fluids could have played important roles in producing a giant porphyry Cu deposit regardless of a short- or long-lived magmatic-hydrothermal system.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3