Linking Porphyry Cu Formation to Tectonic Change in Postsubduction Settings: A Case Study from the Giant Yulong Belt, Eastern Tibet

Author:

Huang Ming-Liang1,Bi Xian-Wu1,Hu Rui-Zhong12,Chiaradia Massimo3,Zhu Jing-Jing1,Xu Lei-Luo1,Yang Zong-Yong1

Affiliation:

1. 1 State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

2. 2 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3. 3 Department of Earth Sciences, University of Geneva, rue des Maraîchers 13, 1205 Geneva, Switzerland

Abstract

Abstract Porphyry deposits in magmatic arcs form coincident with changes to steady-state oceanic subduction conditions, such as changes in plate convergence rate and vector or angle of subduction. However, it remains unclear whether such processes also operated during formation of postsubduction porphyry deposits. The Yulong magmatic belt in the eastern Tibetan Plateau consists of middle to late Eocene igneous rocks (~51–35 Ma) that formed during the India-Asia collision, whereas all known porphyry deposits are associated with late Eocene rocks (43–35 Ma). A synthesis of new and published geochemical data shows marked variations from the middle to late Eocene, including increasing whole-rock La/Yb, Sr/Y, and EuN/EuN* values, as well as zircon EuN/EuN* values. These geochemical variations, together with petrographic observations, indicate a transition from plagioclase-dominated to amphibole-dominated fractionation from the middle to late Eocene. Coupled changes of magma compositions and porphyry Cu metallogeny from the middle to late Eocene coincided with, or were slightly preceded by, the onset of regional uplift and crustal thickening, triggered by the India-Asia hard collision and rapid deceleration of the India-Asia convergence rate at ca. 50 to 44 Ma. Crustal thickening may have caused prolonged magma differentiation at greater depths and accumulation of dissolved H2O, both of which contributed to amphibole-dominated fractionation and generation of hydrous melt that are prospective for porphyry Cu mineralization. Our study highlights the importance of tectonic changes in the formation of the Yulong and other postsubduction porphyry Cu belts—a scenario similar to that operated in subduction-related settings such as the Andes.

Publisher

Society of Economic Geologists, Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3