Tin Enrichment in Magmatic-Hydrothermal Environments Associated with Cassiterite Mineralization at Ardlethan, Eastern Australia: Insights from Rb-Sr and Sm-Nd Isotope Compositions in Tourmaline

Author:

Carr Patrick1,Norman Marc D.1,Bennett Vickie C.1,Blevin Phillip L.2

Affiliation:

1. Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory 2601, Australia

2. Geological Survey of New South Wales, Maitland, New South Wales 2320, Australia

Abstract

Abstract Primary cassiterite mineralization is often associated with highly evolved granites, but the magmatic and hydrothermal processes that produce these deposits are often difficult to decipher. In this study, we employed the chemical and Sr-Nd isotope compositions of tourmaline to monitor processes of Sn enrichment in the magmatic and hydrothermal stages of the Ardlethan granite (Australia) and its associated Sn deposits. Initial 87Sr/86Sr (0.710–0.717) and ɛNd (–5.0 to −1.0) values of late magmatic tourmalines indicate derivation of the Ardlethan granite via an assimilation-fractional crystallization (AFC) process in which incorporation of Ordovician sediment into an I-type granitic parental magma produced an enrichment of Sn at least 30 times over that of the assumed mafic-dominated igneous source of the granite. The rare earth element and Sn concentrations of tourmaline in the greisen deposits together with δ18O of coprecipitated quartz indicate that exsolution of a late-stage, Cl-rich fluid from the Ardlethan granite led to cassiterite mineralization in these deposits. In contrast the Fe/(Fe + Mg) and initial εNd (–9.2 to −12.9) compositions of tourmaline that coprecipitated with cassiterite in the large breccia pipes adjacent to the Ardlethan granite suggest that granite-derived fluids scavenged Sn by chemical leaching of an older S-type granite that hosts the pipes. This study shows that tourmaline can act as a robust monitor of key geologic processes in complex and dynamic magmatic-hydrothermal Sn systems and that its 87Sr/86Sr and ɛNd isotope compositions are especially useful for constraining the nature of magmatic and hydrothermal sources that contributed to these deposits.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3