Tourmaline chemical and boron isotopic constraints on the magmatic-hydrothermal transition and rare-metal mineralization in alkali granitic systems

Author:

Wu Huan-Huan1234,Huang He1ORCID,Zhang Zhao-Chong2,Yang Shui-Yuan5,Gao Yong-Bao3,Finch Adrian A.4

Affiliation:

1. SinoProbe Laboratory, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, P.R. China

2. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, P.R. China

3. Xi’an Center of Mineral Resources Survey, China Geological Survey, Xi’an 710100, P.R. China

4. School of Earth & Environmental Sciences, University of St. Andrews, St Andrews, KY16 9TS, U.K.

5. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, P.R. China

Abstract

Abstract The magmatic-hydrothermal transition in granite-related, rare-metal metallogenic systems has received great attention as economic rare metal (including rare earth) minerals reach saturation and trigger mineralization at this stage. However, deciphering the details of the melt-fluid evolution process and the distribution behavior of rare metals remains difficult. Here, we applied tourmaline chemistry and B isotopes to unravel processes at the magmatic-hydrothermal transition that are responsible for rare-metal partitioning in the Huoshibulake (HS) and Tamu (TM) REE-Nb-mineralized intrusions in Southern Tianshan, SW Central Asian Orogenic Belt. Three types of tourmaline are identified in the plutons: (1) disseminated tourmaline in the granite, with a brown-yellow core (HS-DB) and blue-green rim (HS-DG); (2) orbicular tourmaline, with a brown-yellow core (HS-OB and TM-OB) and blue-green rim (HS-OG and TM-OG); and (3) vein tourmaline (HS-V and TM-V). Compositionally, all these tourmalines exhibit extremely low Ca and Mg contents and are classified as schorl. The substitution processes of major-element variations are dominantly caused by (Al,☐)(Fe,Na)−1 exchange vectors. Four generations of tourmaline crystallization are established based on the petrographic, compositional, and B isotopes evolution of the tourmaline. First, the HS-DB crystals crystallized from the highly evolved residual melt, and then HS-OB and TM-OB precipitated from immiscible B-rich aqueous melts during the magmatic-hydrothermal transition. Subsequently, the blue-green overgrowths (HS-DG, HS-OG, and TM-OG) crystallized from exsolved hydrothermal fluids. Finally, the formation of HS-V and TM-V resulted from another melt pulse from a deeper magma chamber. The magmatic tourmaline exhibits a narrow range of δ11B values between –12.6 to –10.0‰, while the hydrothermal tourmaline shows significantly heavier and variable δ11B values ranging from –10.2 to –4.9‰. The fractionation of B isotopes is reproduced by Rayleigh fractionation modeling. Lower Nb and Sn contents in the orbicular tourmaline relative to those precipitated from the residual melt, along with the lack of rare-metal minerals in the orbicules, indicate that B-rich melt/fluid exsolution does not necessarily contribute to the rare-metal mineralization. In comparison, the veins contain abundant rare-metal and REE minerals in close paragenesis with fluorite, and the vein tourmaline shows high-Nb and -Sn contents. These observations suggest that saturation of fluorite triggered the precipitation of rare metals, and fluorine played a critical role in rare metal concentration and mineralization. This study highlights the potential of tourmaline to trace the magmatic-hydrothermal transition and provide insights into rare-metal mineralization in the granitic systems.

Publisher

Mineralogical Society of America

Reference96 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3