Mutation rates and adaptive variation among the clinically dominant clusters of Mycobacterium abscessus

Author:

Commins Nicoletta1,Sullivan Mark R.2ORCID,McGowen Kerry2ORCID,Koch Evan M.1ORCID,Rubin Eric J.23,Farhat Maha14ORCID

Affiliation:

1. Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115

2. Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115

3. Department of Microbiology, Harvard Medical School, Boston, MA 02115

4. Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114

Abstract

Mycobacterium abscessus ( Mab ) is a multidrug-resistant pathogen increasingly responsible for severe pulmonary infections. Analysis of whole-genome sequences (WGS) of Mab demonstrates dense genetic clustering of clinical isolates collected from disparate geographic locations. This has been interpreted as supporting patient-to-patient transmission, but epidemiological studies have contradicted this interpretation. Here, we present evidence for a slowing of the Mab molecular clock rate coincident with the emergence of phylogenetic clusters. We performed phylogenetic inference using publicly available WGS from 483 Mab patient isolates. We implement a subsampling approach in combination with coalescent analysis to estimate the molecular clock rate along the long internal branches of the tree, indicating a faster long-term molecular clock rate compared to branches within phylogenetic clusters. We used ancestry simulation to predict the effects of clock rate variation on phylogenetic clustering and found that the degree of clustering in the observed phylogeny is more easily explained by a clock rate slowdown than by transmission. We also find that phylogenetic clusters are enriched in mutations affecting DNA repair machinery and report that clustered isolates have lower spontaneous mutation rates in vitro. We propose that Mab adaptation to the host environment through variation in DNA repair genes affects the organism’s mutation rate and that this manifests as phylogenetic clustering. These results challenge the model that phylogenetic clustering in Mab is explained by person-to-person transmission and inform our understanding of transmission inference in emerging, facultative pathogens.

Funder

Damon Runyon Cancer Research Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3