MEnTaT: A machine-learning approach for the identification of mutations to increase protein stability

Author:

Muellers Samantha N.1ORCID,Allen Karen N.1ORCID,Whitty Adrian1ORCID

Affiliation:

1. Department of Chemistry, Boston University, Boston, MA 02215

Abstract

Enhancing protein thermal stability is important for biomedical and industrial applications as well as in the research laboratory. Here, we describe a simple machine-learning method which identifies amino acid substitutions that contribute to thermal stability based on comparison of the amino acid sequences of homologous proteins derived from bacteria that grow at different temperatures. A key feature of the method is that it compares the sequences based not simply on the amino acid identity, but rather on the structural and physicochemical properties of the side chain. The method accurately identified stabilizing substitutions in three well-studied systems and was validated prospectively by experimentally testing predicted stabilizing substitutions in a polyamine oxidase. In each case, the method outperformed the widely used bioinformatic consensus approach. The method can also provide insight into fundamental aspects of protein structure, for example, by identifying how many sequence positions in a given protein are relevant to temperature adaptation.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3