Real-space imaging of periodic nanotextures in thin films via phasing of diffraction data

Author:

Shao Ziming1,Schnitzer Noah1,Ruf Jacob2ORCID,Gorobtsov Oleg Yu.1,Dai Cheng3,Goodge Berit H.45ORCID,Yang Tiannan3,Nair Hari1,Stoica Vlad A.36,Freeland John W.6,Ruff Jacob P.7,Chen Long-Qing3,Schlom Darrell G.158ORCID,Shen Kyle M.25,Kourkoutis Lena F.45ORCID,Singer Andrej1ORCID

Affiliation:

1. Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853

2. Department of Physics, Cornell University, Ithaca, NY 14853

3. Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802

4. School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853

5. Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853

6. Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439

7. Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853

8. Leibniz-Institut für Kristallzüchtung, Berlin 12489, Germany

Abstract

New properties and exotic quantum phenomena can form due to periodic nanotextures, including Moire patterns, ferroic domains, and topologically protected magnetization and polarization textures. Despite the availability of powerful tools to characterize the atomic crystal structure, the visualization of nanoscale strain-modulated structural motifs remains challenging. Here, we develop nondestructive real-space imaging of periodic lattice distortions in thin epitaxial films and report an emergent periodic nanotexture in a Mott insulator. Specifically, we combine iterative phase retrieval with unsupervised machine learning to invert the diffuse scattering pattern from conventional X-ray reciprocal-space maps into real-space images of crystalline displacements. Our imaging in PbTiO 3 /SrTiO 3 superlattices exhibiting checkerboard strain modulation substantiates published phase-field model calculations. Furthermore, the imaging of biaxially strained Mott insulator Ca 2 RuO 4 reveals a strain-induced nanotexture comprised of nanometer-thin metallic-structure wires separated by nanometer-thin Mott-insulating-structure walls, as confirmed by cryogenic scanning transmission electron microscopy (cryo-STEM). The nanotexture in Ca 2 RuO 4 film is induced by the metal-to-insulator transition and has not been reported in bulk crystals. We expect the phasing of diffuse X-ray scattering from thin crystalline films in combination with cryo-STEM to open a powerful avenue for discovering, visualizing, and quantifying the periodic strain-modulated structures in quantum materials.

Funder

U.S. Department of Energy

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3