Affiliation:
1. Department of Computer Science, Virginia Tech, Blacksburg, VA 24061
Abstract
Transformer neural networks have revolutionized structural biology with the ability to predict protein structures at unprecedented high accuracy. Here, we report the predictive modeling performance of the state-of-the-art protein structure prediction methods built on transformers for 69 protein targets from the recently concluded 15th Critical Assessment of Structure Prediction (CASP15) challenge. Our study shows the power of transformers in protein structure modeling and highlights future areas of improvement.
Funder
HHS | NIH | National Institute of General Medical Sciences
National Science Foundation
Publisher
Proceedings of the National Academy of Sciences
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献