Abstract
Intrinsically disordered proteins have dynamic structures through which they play key biological roles. The elucidation of their conformational ensembles is a challenging problem requiring an integrated use of computational and experimental methods. Molecular simulations are a valuable computational strategy for constructing structural ensembles of disordered proteins but are highly resource-intensive. Recently, machine learning approaches based on deep generative models that learn from simulation data have emerged as an efficient alternative for generating structural ensembles. However, such methods currently suffer from limited transferability when modeling sequences and conformations absent in the training data. Here, we develop a novel generative model that achieves high levels of transferability for intrinsically disordered protein ensembles. The approach, named idpSAM, is a latent diffusion model based on transformer neural networks. It combines an autoencoder to learn a representation of protein geometry and a diffusion model to sample novel conformations in the encoded space. IdpSAM was trained on a large dataset of simulations of disordered protein regions performed with the ABSINTH implicit solvent model. Thanks to the expressiveness of its neural networks and its training stability, idpSAM faithfully captures 3D structural ensembles of test sequences with no similarity in the training set. Our study also demonstrates the potential for generating full conformational ensembles from datasets with limited sampling and underscores the importance of training set size for generalization. We believe that idpSAM represents a significant progress in transferable protein ensemble modeling through machine learning.
Funder
National Institute of General Medical Sciences
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献