Author:
Formosa-Dague Cécile,Speziale Pietro,Foster Timothy J.,Geoghegan Joan A.,Dufrêne Yves F.
Abstract
Staphylococcus aureus surface protein SasG promotes cell–cell adhesion during the accumulation phase of biofilm formation, but the molecular basis of this interaction remains poorly understood. Here, we unravel the mechanical properties of SasG on the surface of living bacteria, that is, in its native cellular environment. Nanoscale multiparametric imaging of living bacteria reveals that Zn2+ strongly increases cell wall rigidity and activates the adhesive function of SasG. Single-cell force measurements show that SasG mediates cell–cell adhesion via specific Zn2+-dependent homophilic bonds between β-sheet–rich G5–E domains on neighboring cells. The force required to unfold individual domains is remarkably strong, up to ∼500 pN, thus explaining how SasG can withstand physiological shear forces. We also observe that SasG forms homophilic bonds with the structurally related accumulation-associated protein of Staphylococcus epidermidis, suggesting the possibility of multispecies biofilms during host colonization and infection. Collectively, our findings support a model in which zinc plays a dual role in activating cell–cell adhesion: adsorption of zinc ions to the bacterial cell surface increases cell wall cohesion and favors the projection of elongated SasG proteins away from the cell surface, thereby enabling zinc-dependent homophilic bonds between opposing cells. This work demonstrates an unexpected relationship between mechanics and adhesion in a staphylococcal surface protein, which may represent a general mechanism among bacterial pathogens for activating cell association.
Funder
Belgian National Fund for Scientific Research | Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
FNRS-Welbio
Interuniversity Poles of Attraction Programme
Research department of the communaute francaise de Belgique
Publisher
Proceedings of the National Academy of Sciences
Cited by
139 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献