Dynamic secretion during meiotic reentry integrates the function of the oocyte and cumulus cells

Author:

Cakmak Hakan,Franciosi Federica,Zamah A. Musa,Cedars Marcelle I.,Conti Marco

Abstract

The differentiation of the female gamete into a developmentally competent oocyte relies on the protected environment of the ovarian follicle. The oocyte plays a key role in establishing this microenvironment by releasing paracrine factors that control the functions of surrounding somatic cells. Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are secreted during follicle growth and play pivotal roles in this local regulation. The current view is that the function of these secreted factors declines in the periovulatory period when the oocyte reenters the meiotic cell cycle. Here, we provide evidence that oocyte reentry into meiosis is instead associated with a shift in the pattern of secretion with a new set of bioactive molecules synthesized before ovulation. Using interleukin 7 (IL7) as a prototypic secreted factor, we show that its secretion is dependent on activation of mRNA translation in synchrony with the cell cycle and that its translation is under the control of somatic cells. IL7 is part of a local feedback loop with the soma because it regulates cumulus cell replication. Similar conclusions are reached when IL7 secretion is measured in human follicular fluid during in vitro fertilization cycles. IL7 concentration in the follicular fluid correlates with the oocyte ability to reach the MII stage of maturation. These findings are consistent with the hypothesis that a new set of local factors is secreted by the oocyte during ovulation. These dynamic secretions are likely critical for promoting the final stages of maturation and oocyte developmental competence.

Funder

HHS | NIH | National Institute of Child Health and Human Development

HHS | NIH | NICHD | National Center for Medical Rehabilitation Research

MateRNA

HHS | NIH | National Center for Advancing Translational Sciences

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3