The oocyte microenvironment is altered in adolescents compared to oocyte donors

Author:

Gokyer DilanORCID,Akinboro Sophia,Zhou Luhan T.ORCID,Kleinhans Anna,Laronda Monica M.ORCID,Duncan Francesca E.ORCID,Riley Joan K.,Goldman Kara N.ORCID,Babayev ElnurORCID

Abstract

AbstractStudy questionAre the molecular signatures of cumulus cells (CCs) and follicular fluid (FF) of adolescents undergoing fertility preservation differ from that of reproductively adult oocyte donors?Summary answerThe microenvironment immediately surrounding the oocyte, including the CCs and FF, is altered in adolescents undergoing fertility preservation compared to oocyte donors.What is known alreadyAdolescents experience a period of subfecundity following menarche. Recent evidence suggests that this may be at least partially due to increased oocyte aneuploidy. Reproductive juvenescence in mammals is associated with suboptimal oocyte quality.Study design, size, durationThis was a prospective cohort study. Adolescents (10-19 years old, N=23) and oocyte donors (22-30 years old, N=31) undergoing ovarian stimulation and oocyte retrieval at the Northwestern Fertility and Reproductive Medicine Center between November 1, 2020 and May 1, 2023 were enrolled in this study.Participants/materials, setting, methodsPatient demographics, ovarian stimulation, and oocyte retrieval outcomes were collected for all participants. The transcriptome of CCs associated with mature oocytes was compared between adolescents (10-19 years old, n=19), and oocyte donors (22-30 years old, n=19) using bulk RNA-sequencing. FF cytokine profiles (10-19 years old, n=18 vs. 25-30 years old, n=16) were compared using cytokine arrays.Main results and the role of chanceRNA-seq analysis revealed 581 differentially expressed genes (DEGs) in cumulus cells of adolescents relative to oocyte donors, with 361 genes downregulated and 220 upregulated. Genes enriched in pathways involved in cell cycle and cell division (e.g., GO:1903047, p= 3.5 x 10-43; GO:0051983, p= 4.1 x 10-30; GO:0000281, p= 7.7 x 10-15; GO:0044839, p= 5.3 x 10-13) were significantly downregulated, while genes enriched in several pathways involved in cellular and vesicle organization (e.g., GO:0010256, p= 1.2 x 10-8; GO:0051129, p= 6.8 x 10-7; GO:0016050, p= 7.4 x 10-7; GO:0051640, p= 8.1 x 10-7) were upregulated in CCs of adolescents compared to oocyte donors. The levels of 9 cytokines were significantly increased in FF of adolescents compared to oocyte donors: IL-1 alpha (2-fold), IL-1 beta (1.7-fold), I-309 (2-fold), IL-15 (1.6-fold), TARC (1.9-fold), TPO (2.1-fold), IGFBP-4 (2-fold), IL-12-p40 (1.7-fold) and ENA-78 (1.4-fold). Interestingly, 7 of these cytokines have known pro-inflammatory roles. Importantly, neither the CC transcriptomes or FF cytokine profiles were different in adolescents with or without cancer.Large scale dataOriginal high-throughput sequencing data will be deposited in Gene Expression Omnibus (GEO) before publication, and the GEO accession number will be provided here.Limitations, reasons for cautionThis study aims to gain insights into the associated gamete quality by studying the immediate oocyte microenvironment. The direct study of oocytes is more challenging due to sample scarcity, as they are cryopreserved for future use, but will provide a more accurate assessment of oocyte reproductive potential.Wider implications of the findingsUnderstanding the underpinnings of altered immediate oocyte microenvironment of adolescent patients may provide insights into the reproductive potential of the associated gametes in the younger end of the age spectrum. This has implications for the fertility preservation cycles for very young patients.Study funding/competing interest(s)This project was supported by Friends of Prentice organization SP0061324 (M.M.L and E.B.), Gesualdo Family Foundation (Research Scholar: M.M.L.), and NIH/NICHD K12 HD050121 (E.B.). The authors have declared that no conflict of interest exists.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3