Abstract
We compute the spin-structure factor of XXZ spin chains in the Heisenberg and gapped (Ising) regimes in the high-temperature limit for nonzero magnetization, within the framework of generalized hydrodynamics, including diffusive corrections. The structure factor shows a hierarchy of timescales in the gapped phase, owing to s-spin magnon bound states (“strings”) of various sizes. Although short strings move ballistically, long strings move primarily diffusively as a result of their collisions with short strings. The interplay between these effects gives rise to anomalous power-law decay of the spin-structure factor, with continuously varying exponents, at any fixed separation in the late-time limit. We elucidate the cross-over to diffusion (in the gapped phase) and to superdiffusion (at the isotropic point) in the half-filling limit. We verify our results via extensive matrix product operator calculations.
Funder
National Science Foundation
U.S. Department of Energy
Publisher
Proceedings of the National Academy of Sciences
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献