Dynamics of magnetization at infinite temperature in a Heisenberg spin chain
Author:
Rosenberg E.12ORCID, Andersen T. I.1, Samajdar R.34, Petukhov A.1, Hoke J. C.5, Abanin D.1ORCID, Bengtsson A.1ORCID, Drozdov I. K.16, Erickson C.1, Klimov P. V.1, Mi X.1ORCID, Morvan A.1ORCID, Neeley M.1ORCID, Neill C.1ORCID, Acharya R.1, Allen R.1, Anderson K.1, Ansmann M.1ORCID, Arute F.1, Arya K.1ORCID, Asfaw A.1, Atalaya J.1, Bardin J. C.17ORCID, Bilmes A.1, Bortoli G.1, Bourassa A.1ORCID, Bovaird J.1, Brill L.1, Broughton M.1, Buckley B. B.1ORCID, Buell D. A.1, Burger T.1, Burkett B.1ORCID, Bushnell N.1ORCID, Campero J.1, Chang H.-S.1ORCID, Chen Z.1, Chiaro B.1, Chik D.1, Cogan J.1, Collins R.1ORCID, Conner P.1, Courtney W.1, Crook A. L.1, Curtin B.1, Debroy D. M.1, Barba A. Del Toro1ORCID, Demura S.1ORCID, Di Paolo A.1ORCID, Dunsworth A.1, Earle C.1, Faoro L.1, Farhi E.1, Fatemi R.1, Ferreira V. S.1, Burgos L. Flores1, Forati E.1, Fowler A. G.1ORCID, Foxen B.1ORCID, Garcia G.1, Genois É.1, Giang W.1, Gidney C.1, Gilboa D.1, Giustina M.1, Gosula R.1, Dau A. Grajales1, Gross J. A.1ORCID, Habegger S.1ORCID, Hamilton M. C.18ORCID, Hansen M.1, Harrigan M. P.1ORCID, Harrington S. D.1ORCID, Heu P.1, Hill G.1, Hoffmann M. R.1ORCID, Hong S.1, Huang T.1, Huff A.1, Huggins W. J.1, Ioffe L. B.1ORCID, Isakov S. V.1, Iveland J.1, Jeffrey E.1, Jiang Z.1, Jones C.1, Juhas P.1ORCID, Kafri D.1ORCID, Khattar T.1, Khezri M.1, Kieferová M.19, Kim S.1ORCID, Kitaev A.1, Klots A. R.1, Korotkov A. N.110, Kostritsa F.1, Kreikebaum J. M.1ORCID, Landhuis D.1ORCID, Laptev P.1, Lau K.-M.1, Laws L.1, Lee J.111, Lee K. W.1ORCID, Lensky Y. D.1, Lester B. J.1ORCID, Lill A. T.1, Liu W.1, Locharla A.1ORCID, Mandrà S.1ORCID, Martin O.1ORCID, Martin S.1, McClean J. R.1ORCID, McEwen M.1ORCID, Meeks S.1, Miao K. C.1ORCID, Mieszala A.1, Montazeri S.1, Movassagh R.1ORCID, Mruczkiewicz W.1ORCID, Nersisyan A.1, Newman M.1, Ng J. H.1, Nguyen A.1, Nguyen M.1, Niu M. Y.1ORCID, O’Brien T. E.1ORCID, Omonije S.1, Opremcak A.1, Potter R.1, Pryadko L. P.12, Quintana C.1, Rhodes D. M.1ORCID, Rocque C.1, Rubin N. C.1ORCID, Saei N.1, Sank D.1ORCID, Sankaragomathi K.1, Satzinger K. J.1ORCID, Schurkus H. F.1ORCID, Schuster C.1ORCID, Shearn M. J.1, Shorter A.1, Shutty N.1, Shvarts V.1, Sivak V.1, Skruzny J.1, Smith W. Clarke1, Somma R. D.1, Sterling G.1, Strain D.1, Szalay M.1ORCID, Thor D.1, Torres A.1, Vidal G.1, Villalonga B.1, Heidweiller C. Vollgraff1, White T.1ORCID, Woo B. W. K.1ORCID, Xing C.1, Yao Z. Jamie1ORCID, Yeh P.1ORCID, Yoo J.1, Young G.1, Zalcman A.1ORCID, Zhang Y.1, Zhu N.1ORCID, Zobrist N.1ORCID, Neven H.1ORCID, Babbush R.1ORCID, Bacon D.1ORCID, Boixo S.1ORCID, Hilton J.1, Lucero E.1ORCID, Megrant A.1ORCID, Kelly J.1, Chen Y.1ORCID, Smelyanskiy V.1ORCID, Khemani V.5, Gopalakrishnan S.3, Prosen T.13ORCID, Roushan P.1ORCID
Affiliation:
1. Google Research, Mountain View, CA, USA. 2. Department of Physics, Cornell University, Ithaca, NY, USA. 3. Department of Physics, Princeton University, Princeton, NJ, USA. 4. Princeton Center for Theoretical Science, Princeton University, Princeton, NJ, USA. 5. Department of Physics, Stanford University, Stanford, CA, USA. 6. Department of Physics, University of Connecticut, Storrs, CT, USA. 7. Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA. 8. Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA. 9. QSI, Faculty of Engineering & Information Technology, University of Technology Sydney, Ultimo, NSW, Australia. 10. Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA. 11. Department of Chemistry, Columbia University, New York, NY, USA. 12. Department of Physics and Astronomy, University of California, Riverside, CA, USA. 13. Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia.
Abstract
Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the one-dimensional Heisenberg model were conjectured as to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we studied the probability distribution of the magnetization transferred across the chain’s center,
P
M
. The first two moments of
P
M
show superdiffusive behavior, a hallmark of KPZ universality. However, the third and fourth moments ruled out the KPZ conjecture and allow for evaluating other theories. Our results highlight the importance of studying higher moments in determining dynamic universality classes and provide insights into universal behavior in quantum systems.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|