Fungal aerobiota are not affected by time nor environment over a 13-y time series at the Mauna Loa Observatory

Author:

Tipton Laura,Zahn Geoffrey,Datlof Erin,Kivlin Stephanie N.,Sheridan Patrick,Amend Anthony S.,Hynson Nicole A.ORCID

Abstract

Fungi are ubiquitous and often abundant components of virtually all ecosystems on Earth, serving a diversity of functions. While there is clear evidence that fungal-mediated processes can influence environmental conditions, and in turn select for specific fungi, it is less clear how fungi respond to environmental fluxes over relatively long time frames. Here we set out to examine changes in airborne fungi collected over the course of 13 y, which is the longest sampling time to date. Air filter samples were collected from the Mauna Loa Observatory (MLO) on Hawaii Island, and analyzed using Illumina amplicon sequencing. As a study site, MLO is unique because of its geographic isolation and high elevation, making it an ideal place to capture global trends in climate and aerobiota. We found that the fungal aerobiota sampled at MLO had high species turnover, but compositional similarity did not decrease as a function of time between samples. We attribute these patterns to neutral processes such as idiosyncratic dispersal timing and trajectories. Furthermore, the composition of fungi at any given point was not significantly influenced by any local or global environmental variables we examined. This, and our additional finding of a core set of persistent fungi during our entire sampling period, indicates some degree of stability among fungi in the face of natural environmental fluctuations and human-associated global change. We conclude that the movement of fungi through the atmosphere is a relatively stochastic process.

Funder

National Science Foundation

W. M. Keck Foundation

Alfred P. Sloan Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3