Opto-chemo-mechanical transduction in photoresponsive gels elicits switchable self-trapped beams with remote interactions

Author:

Morim Derek R.,Meeks AmosORCID,Shastri Ankita,Tran Andy,Shneidman Anna V.,Yashin Victor V.,Mahmood Fariha,Balazs Anna C.,Aizenberg Joanna,Saravanamuttu KalaichelviORCID

Abstract

Next-generation photonics envisions circuitry-free, rapidly reconfigurable systems powered by solitonic beams of self-trapped light and their particlelike interactions. Progress, however, has been limited by the need for reversibly responsive materials that host such nonlinear optical waves. We find that repeatedly switchable self-trapped visible laser beams, which exhibit strong pairwise interactions, can be generated in a photoresponsive hydrogel. Through comprehensive experiments and simulations, we show that the unique nonlinear conditions arise when photoisomerization of spiropyran substituents in pH-responsive poly(acrylamide-co-acrylic acid) hydrogel transduces optical energy into mechanical deformation of the 3D cross-linked hydrogel matrix. A Gaussian beam self-traps when localized isomerization-induced contraction of the hydrogel and expulsion of water generates a transient waveguide, which entraps the optical field and suppresses divergence. The waveguide is erased and reformed within seconds when the optical field is sequentially removed and reintroduced, allowing the self-trapped beam to be rapidly and repeatedly switched on and off at remarkably low powers in the milliwatt regime. Furthermore, this opto-chemo-mechanical transduction of energy mediated by the 3D cross-linked hydrogel network facilitates pairwise interactions between self-trapped beams both in the short range where there is significant overlap of their optical fields, and even in the long range––over separation distances of up to 10 times the beam width––where such overlap is negligible.

Funder

DOD | United States Army | RDECOM | Army Research Office

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3