Light-guiding-light-based temporal integration of broadband terahertz pulses in air

Author:

Zhao Jiayu12ORCID,Zhu Feifan1ORCID,Han Yongpeng1ORCID,Wang Qining1ORCID,Lao Li3,Li Xiaofeng1,Peng Yan12ORCID,Zhu Yiming12ORCID

Affiliation:

1. Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology 1 , Shanghai 200093, China

2. Shanghai Institute of Intelligent Science and Technology, Tongji University 2 , Shanghai 200092, China

3. Tera Aurora Electro-optics Technology Co., Ltd. 3 , Shanghai 200093, China

Abstract

The next generation of all-optical computation platforms prefers the light-guiding-light (LGL) scheme inside a medium that envisions circuitry-free and rapidly reconfigurable systems powered by dynamic interactions between light beams. Currently, suitable LGL materials and corresponding mechanisms are in urgent need. In this work, we proposed ubiquitous air as a restorable LGL signal manipulation medium with transient air-plasma waveguide circuits. Briefly, by focusing femtosecond laser beams in free space, the created atmospheric plasma filament array via photoionization was able to guide terahertz (THz) pulses along its epsilon-near-zero zone with a 1/f-profile spectral response. Consequently, this achieved a time-domain integration of the THz pulse in broad bandwidth. When the pumping laser was sequentially turned off and on, this air-plasma multi-filament structure was erased and rebuilt within nano- and femto-seconds, respectively, allowing rapid and repeated rearrangements of the all-optical stage. Furthermore, this air-based LGL information processing approach is promising to pave the way toward all-optical calculations during free-space directional transmission of THz waves, in which way the delivered THz signal can be remotely controlled.

Funder

National Natural Science Foundation of China

Youth Sci-Tech Qimingxing Program of Shanghai

National Key Research and Development Program

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3