DeepRiPP integrates multiomics data to automate discovery of novel ribosomally synthesized natural products

Author:

Merwin Nishanth J.,Mousa Walaa K.,Dejong Chris A.,Skinnider Michael A.ORCID,Cannon Michael J.,Li Haoxin,Dial Keshav,Gunabalasingam Mathusan,Johnston Chad,Magarvey Nathan A.

Abstract

Microbial natural products represent a rich resource of evolved chemistry that forms the basis for the majority of pharmacotherapeutics. Ribosomally synthesized and posttranslationally modified peptides (RiPPs) are a particularly interesting class of natural products noted for their unique mode of biosynthesis and biological activities. Analyses of sequenced microbial genomes have revealed an enormous number of biosynthetic loci encoding RiPPs but whose products remain cryptic. In parallel, analyses of bacterial metabolomes typically assign chemical structures to only a minority of detected metabolites. Aligning these 2 disparate sources of data could provide a comprehensive strategy for natural product discovery. Here we present DeepRiPP, an integrated genomic and metabolomic platform that employs machine learning to automate the selective discovery and isolation of novel RiPPs. DeepRiPP includes 3 modules. The first, NLPPrecursor, identifies RiPPs independent of genomic context and neighboring biosynthetic genes. The second module, BARLEY, prioritizes loci that encode novel compounds, while the third, CLAMS, automates the isolation of their corresponding products from complex bacterial extracts. DeepRiPP pinpoints target metabolites using large-scale comparative metabolomics analysis across a database of 10,498 extracts generated from 463 strains. We apply the DeepRiPP platform to expand the landscape of novel RiPPs encoded within sequenced genomes and to discover 3 novel RiPPs, whose structures are exactly as predicted by our platform. By building on advances in machine learning technologies, DeepRiPP integrates genomic and metabolomic data to guide the isolation of novel RiPPs in an automated manner.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3