Abstract
Performing a stereotyped behavior successfully over time requires both maintaining performance quality and adapting efficiently to environmental or physical changes affecting performance. The bird song system is a paradigmatic example of learning a stereotyped behavior and therefore is a good place to study the interaction of these two goals. Through a model of bird song learning, we show how instability in neural representation of stable behavior confers advantages for adaptation and maintenance with minimal cost to performance quality. A precise, temporally sparse sequence from the premotor nucleus HVC is crucial to the performance of song in songbirds. We find that learning in the presence of sequence variations facilitates rapid relearning after shifts in the target song or muscle structure and results in decreased error with neuron loss. This robustness is due to the prevention of the buildup of correlations in the learned connectivity. In the absence of sequence variations, these correlations grow, due to the relatively low dimensionality of the exploratory variation in comparison with the number of plastic synapses. Our results suggest one would expect to see variability in neural systems executing stereotyped behaviors, and this variability is an advantageous feature rather than a challenge to overcome.
Funder
National Science Foundation
HHS | NIH | National Institute on Drug Abuse
HHS | NIH | National Institute of Neurological Disorders and Stroke
Publisher
Proceedings of the National Academy of Sciences
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献