Unsupervised Restoration of a Complex Learned Behavior After Large-Scale Neuronal Perturbation

Author:

Wang Bo,Torok Zsofia,Duffy Alison,Bell David,Wongso Shelyn,Velho Tarciso,Fairhall Adrienne,Lois CarlosORCID

Abstract

Reliable execution of behaviors requires that brain circuits correct for variations in neuronal dynamics. Genetic perturbation of the majority of excitatory neurons in a brain region involved in song production in adult songbirds with stereotypical songs triggered severe degradation of their songs. The song fully recovered within two weeks, and substantial improvement occurred even when animals were prevented from singing during the recovery period, indicating that offline mechanisms enable recovery in an unsupervised manner. Song restoration was accompanied by increased excitatory synaptic inputs to unmanipulated neurons in the same region. A model inspired by the behavioral and electrophysiological findings suggests that a combination of unsupervised single-cell and population-level homeostatic plasticity rules can support the observed functional restoration after large-scale disruption of networks implementing sequential dynamics. In the model the sequence is restored through a parallel homeostatic process, rather than regrown serially, and predicts that sequences should recover in a saltatory fashion. Correspondingly, we observed such recovery in the songs of manipulated animals, with syllables that rapidly alternate between abnormal and normal durations from rendition to rendition until eventually they permanently settled into their original length. These observations indicate the existence of cellular and systems-level restorative mechanisms that ensure behavioral resilience.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3