Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry

Author:

Liao Xiong,Li Mengsi,Liu Bin,Yan Miaoling,Yu Xiaomin,Zi Hailing,Liu Renyi,Yamamuro Chizuko

Abstract

Fruit growth and ripening are controlled by multiple phytohormones. How these hormones coordinate and interact with each other to control these processes at the molecular level is unclear. We found in the early stages of Fragaria vesca (woodland strawberry) fruit development, auxin increases both widths and lengths of fruits, while gibberellin [gibberellic acid (GA)] mainly promotes their longitudinal elongation. Auxin promoted GA biosynthesis and signaling by activating GA biosynthetic and signaling genes, suggesting auxin function is partially dependent on GA function. To prevent the repressive effect of abscisic acid (ABA) on fruit growth, auxin and GA suppressed ABA accumulation during early fruit development by activating the expression of FveCYP707A4a encoding cytochrome P450 monooxygenase that catalyzes ABA catabolism. At the onset of fruit ripening, both auxin and GA levels decreased, leading to a steep increase in the endogenous level of ABA that drives fruit ripening. ABA repressed the expression of FveCYP707A4a but promoted that of FveNCED, a rate-limiting step in ABA biosynthesis. Accordingly, altering FveCYP707A4a expression changed the endogenous ABA levels and affected FveNCED expression. Hence, ABA catabolism and biosynthesis are tightly linked by feedback and feedforward loops to limit ABA contents for fruit growth and to quickly increase ABA contents for the onset of fruit ripening. These results indicate that FveCYP707A4a not only regulates ABA accumulation but also provides a hub to coordinate fruit size and ripening times by relaying auxin, GA, and ABA signals.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3