Episodic organic carbon fluxes from surface ocean to abyssal depths during long-term monitoring in NE Pacific

Author:

Smith Kenneth L.,Ruhl Henry A.,Huffard Christine L.,Messié Monique,Kahru Mati

Abstract

Growing evidence suggests substantial quantities of particulate organic carbon (POC) produced in surface waters reach abyssal depths within days during episodic flux events. A 29-year record of in situ observations was used to examine episodic peaks in POC fluxes and sediment community oxygen consumption (SCOC) at Station M (NE Pacific, 4,000-m depth). From 1989 to 2017, 19% of POC flux at 3,400 m arrived during high-magnitude episodic events (≥mean + 2 σ), and 43% from 2011 to 2017. From 2011 to 2017, when high-resolution SCOC data were available, time lags between changes in satellite-estimated export flux (EF), POC flux, and SCOC on the sea floor varied between six flux events from 0 to 70 days, suggesting variable remineralization rates and/or particle sinking speeds. Half of POC flux pulse events correlated with prior increases in EF and/or subsequent SCOC increases. Peaks in EF overlying Station M frequently translated to changes in POC flux at abyssal depths. A power-law model (Martin curve) was used to estimate abyssal fluxes from EF and midwater temperature variation. While the background POC flux at 3,400-m depth was described well by the model, the episodic events were significantly underestimated by ∼80% and total flux by almost 50%. Quantifying episodic pulses of organic carbon into the deep sea is critical in modeling the depth and intensity of POC sequestration and understanding the global carbon cycle.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3