Reshaping perspectives of deep-sea benthic function

Author:

Sturdivant S. Kersey,Guarinello Marisa L.,Germano Joseph D.,Carey Drew A.

Abstract

Bioturbation is a key ecosystem function with a fundamental role in mediating major biogeochemical cycles. The intensity and depth of bioturbation is influenced by the taxa present, which is often a function of food supply. The deep sea is generally oligotrophic with sediments composed predominantly of small, shallow burrowing macrofauna (<10 cm). Human activity is increasingly introducing POC to the deep-sea, however, organic enrichment of the deep-sea, and the subsequent response of bioturbators is poorly understood. Here we present data on benthic function in deep-sea systems that have experienced organic enrichment. We show that organic enrichment enhances deep-sea bioturbation through larger, advanced successional taxa, and deeper bioturbation depths. Enhanced bioturbation in the deep-sea should confer positive ecosystem functions (nutrient recycling, microbiological activity, remineralization), but adherence to approaches and interpretations guided by the paradigm of small, shallow-burrowing infauna could significantly underestimate deep-sea benthic processes at a global scale.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3