HflXr, a homolog of a ribosome-splitting factor, mediates antibiotic resistance

Author:

Duval Mélodie,Dar Daniel,Carvalho Filipe,Rocha Eduardo P. C.ORCID,Sorek Rotem,Cossart Pascale

Abstract

To overcome the action of antibiotics, bacteria have evolved a variety of different strategies, such as drug modification, target mutation, and efflux pumps. Recently, we performed a genome-wide analysis ofListeria monocytogenesgene expression after growth in the presence of antibiotics, identifying genes that are up-regulated upon antibiotic treatment. One of them,lmo0762, is a homolog ofhflX, which encodes a heat shock protein that rescues stalled ribosomes by separating their two subunits. To our knowledge, ribosome splitting has never been described as an antibiotic resistance mechanism. We thus investigated the role oflmo0762in antibiotic resistance. First, we demonstrated thatlmo0762is an antibiotic resistance gene that confers protection against lincomycin and erythromycin, and that we renamedhflXr(hflXresistance). We show thathflXrexpression is regulated by a transcription attenuation mechanism relying on the presence of alternative RNA structures and a small ORF encoding a 14 amino acid peptide containing the RLR motif, characteristic of macrolide resistance genes. We also provide evidence that HflXr is involved in ribosome recycling in presence of antibiotics. Interestingly,L. monocytogenespossesses another copy ofhflX,lmo1296, that is not involved in antibiotic resistance. Phylogenetic analysis shows several events ofhflXrduplication in prokaryotes and widespread presence ofhflXrin Firmicutes. Overall, this study reveals theListeria hflXras the founding member of a family of antibiotic resistance genes. The resistance conferred by this gene is probably of importance in the environment and within microbial communities.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference36 articles.

1. Chandra N Kumar S (2017) Antibiotics producing soil microorganisms. Antibiotics and Antibiotics Resistance Genes in Soils: Monitoring, Toxicity, Risk Assessment and Management, eds Hashmi MZ Strezov V Varma A (Springer International Publishing, Cham, Switzerland), pp 1–18.

2. Intrinsic antibiotic resistance: Mechanisms, origins, challenges and solutions

3. Molecular mechanisms of antibiotic resistance

4. Regulation of antibiotic-resistance by non-coding RNAs in bacteria

5. A trip in the “New Microbiology” with the bacterial pathogenListeria monocytogenes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3