Machine learning-based classification reveals distinct clusters of non-coding genomic allelic variations associated with Erm-mediated antibiotic resistance

Author:

Tan Yongjun1ORCID,Scornet Alexandre Le2ORCID,Yap Mee-Ngan Frances2ORCID,Zhang Dapeng13ORCID

Affiliation:

1. Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, USA

2. Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA

3. Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri, USA

Abstract

ABSTRACT The erythromycin resistance RNA methyltransferase ( erm ) confers cross-resistance to all therapeutically important macrolides, lincosamides, and streptogramins (MLS phenotype). The expression of erm is often induced by the macrolide-mediated ribosome stalling in the upstream co-transcribed leader sequence, thereby triggering a conformational switch of the intergenic RNA hairpins to allow the translational initiation of erm . We investigated the evolutionary emergence of the upstream erm regulatory elements and the impact of allelic variation on erm expression and the MLS phenotype. Through systematic profiling of the upstream regulatory sequences across all known erm operons, we observed that specific erm subfamilies, such as ermB and ermC , have independently evolved distinct configurations of small upstream ORFs and palindromic repeats. A population-wide genomic analysis of the upstream ermB regions revealed substantial non-random allelic variation at numerous positions. Utilizing machine learning-based classification coupled with RNA structure modeling, we found that many alleles cooperatively influence the stability of alternative RNA hairpin structures formed by the palindromic repeats, which, in turn, affects the inducibility of ermB expression and MLS phenotypes. Subsequent experimental validation of 11 randomly selected variants demonstrated an impressive 91% accuracy in predicting MLS phenotypes. Furthermore, we uncovered a mixed distribution of MLS-sensitive and MLS-resistant ermB loci within the evolutionary tree, indicating repeated and independent evolution of MLS resistance. Taken together, this study not only elucidates the evolutionary processes driving the emergence and development of MLS resistance but also highlights the potential of using non-coding genomic allele data to predict antibiotic resistance phenotypes. IMPORTANCE Antibiotic resistance (AR) poses a global health threat as the efficacy of available antibiotics has rapidly eroded due to the widespread transmission of AR genes. Using Erm-dependent MLS resistance as a model, this study highlights the significance of non-coding genomic allelic variations. Through a comprehensive analysis of upstream regulatory elements within the erm family, we elucidated the evolutionary emergence and development of AR mechanisms. Leveraging population-wide machine learning (ML)-based genomic analysis, we transformed substantial non-random allelic variations into discernible clusters of elements, enabling precise prediction of MLS phenotypes from non-coding regions. These findings offer deeper insight into AR evolution and demonstrate the potential of harnessing non-coding genomic allele data for accurately predicting AR phenotypes.

Funder

HHS | National Institutes of Health

U.S. Department of Defense

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3