Author:
Martins Mauricio A.,Bischof Georg F.,Shin Young C.,Lauer William A.,Gonzalez-Nieto Lucas,Watkins David I.,Rakasz Eva G.,Lifson Jeffrey D.,Desrosiers Ronald C.
Abstract
The biological characteristics of HIV pose serious difficulties for the success of a preventive vaccine. Molecularly cloned SIVmac239 is difficult for antibodies to neutralize, and a variety of vaccine approaches have had great difficulty achieving protective immunity against it in rhesus monkey models. Here we report significant protection against i.v. acquisition of SIVmac239 using a long-lasting approach to vaccination. The vaccine regimen includes a replication-competent herpesvirus engineered to contain a near-full-length SIV genome that expresses all nine SIV gene products, assembles noninfectious SIV virion particles, and is capable of eliciting long-lasting effector-memory cellular immune responses to all nine SIV gene products. Vaccinated monkeys were significantly protected against acquisition of SIVmac239 following repeated marginal dose i.v. challenges over a 4-month period. Further work is needed to define the critical components necessary for eliciting this protective immunity, evaluate the breadth of the protection against a variety of strains, and explore how this approach may be extended to human use.
Publisher
Proceedings of the National Academy of Sciences
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献