Stable long-range interhemispheric coordination is supported by direct anatomical projections

Author:

Shen Kelly,Mišić Bratislav,Cipollini Ben N.,Bezgin Gleb,Buschkuehl Martin,Hutchison R. Matthew,Jaeggi Susanne M.,Kross Ethan,Peltier Scott J.,Everling Stefan,Jonides John,McIntosh Anthony R.,Berman Marc G.

Abstract

The functional interaction between the brain’s two hemispheres includes a unique set of connections between corresponding regions in opposite hemispheres (i.e., homotopic regions) that are consistently reported to be exceptionally strong compared with other interhemispheric (i.e., heterotopic) connections. The strength of homotopic functional connectivity (FC) is thought to be mediated by the regions’ shared functional roles and their structural connectivity. Recently, homotopic FC was reported to be stable over time despite the presence of dynamic FC across both intrahemispheric and heterotopic connections. Here we build on this work by considering whether homotopic FC is also stable across conditions. We additionally test the hypothesis that strong and stable homotopic FC is supported by the underlying structural connectivity. Consistent with previous findings, interhemispheric FC between homotopic regions were significantly stronger in both humans and macaques. Across conditions, homotopic FC was most resistant to change and therefore was more stable than heterotopic or intrahemispheric connections. Across time, homotopic FC had significantly greater temporal stability than other types of connections. Temporal stability of homotopic FC was facilitated by direct anatomical projections. Importantly, temporal stability varied with the change in conductive properties of callosal axons along the anterior–posterior axis. Taken together, these findings suggest a notable role for the corpus callosum in maintaining stable functional communication between hemispheres.

Funder

HHS | NIH | National Institute of Mental Health

Gouvernement du Canada | Canadian Institutes of Health Research

James S. McDonnell Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3