Location- and Object-Based Representational Mechanisms Account for Bilateral Field Advantage in Multiple-Object Tracking

Author:

Merkel ChristianORCID,Hopf Jens-MaxORCID,Schoenfeld Mircea Ariel

Abstract

Keeping track of multiple visually identical and independently moving objects is a remarkable feature of the human visual system. Theoretical accounts for this ability focus on resource-based models that describe parametric decreases of performance with increasing demands during the task (i.e., more relevant items, closer distances, higher speed). Additionally, the presence of two central tracking resources, one within each hemisphere, has been proposed, allowing for an independent maintenance of moving targets within each visual hemifield. Behavioral evidence in favor of such a model shows that human subjects are able to track almost twice as many targets across both hemifields compared with within one hemifield. A number of recent publications argue for two separate and parallel tracking mechanisms during standard object tracking tasks that allow for the maintenance of the relevant information in a location-based and object-based manner. Unique electrophysiological correlates for each of those processes have been identified. The current study shows that these electrophysiological components are differentially present during tracking within either the left or right hemifield. The present results suggest that targets are mostly maintained as an object-based representation during left hemifield tracking, while location-based resources are preferentially engaged during right hemifield tracking. Interestingly, the manner of representation does not seem to have an impact on behavioral performance within the subjects, while the electrophysiological component indicating object-based tracking does correlate with performance between subjects. We propose that hemifield independence during multiple-object tracking may be an indication of the underlying hemispheric bias for parallel location-based and object-based tracking mechanisms.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Society for Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3