Abstract
Turbulence is a fundamental and ubiquitous phenomenon in nature, occurring from astrophysical to biophysical scales. At the same time, it is widely recognized as one of the key unsolved problems in modern physics, representing a paradigmatic example of nonlinear dynamics far from thermodynamic equilibrium. Whereas in the past, most theoretical work in this area has been devoted to Navier–Stokes flows, there is now a growing awareness of the need to extend the research focus to systems with more general patterns of energy injection and dissipation. These include various types of complex fluids and plasmas, as well as active systems consisting of self-propelled particles, like dense bacterial suspensions. Recently, a continuum model has been proposed for such “living fluids” that is based on the Navier–Stokes equations, but extends them to include some of the most general terms admitted by the symmetry of the problem [Wensink HH, et al. (2012) Proc Natl Acad Sci USA 109:14308–14313]. This introduces a cubic nonlinearity, related to the Toner–Tu theory of flocking, which can interact with the quadratic Navier–Stokes nonlinearity. We show that as a result of the subtle interaction between these two terms, the energy spectra at large spatial scales exhibit power laws that are not universal, but depend on both finite-size effects and physical parameters. Our combined numerical and analytical analysis reveals the origin of this effect and even provides a way to understand it quantitatively. Turbulence in active fluids, characterized by this kind of nonlinear self-organization, defines a new class of turbulent flows.
Funder
EC | European Research Council
Publisher
Proceedings of the National Academy of Sciences
Cited by
121 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献