Scaling Transition of Active Turbulence from Two to Three Dimensions

Author:

Wei Da1,Yang Yaochen23,Wei Xuefeng234ORCID,Golestanian Ramin56,Li Ming17,Meng Fanlong234,Peng Yi13ORCID

Affiliation:

1. Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China

2. CAS Key Laboratory for Theoretical Physics Institute of Theoretical Physics Chinese Academy of Sciences Beijing 100190 China

3. School of Physical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China

4. Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325000 China

5. Max Planck Institute for Dynamics and Self‐Organization (MPIDS) D‐37077 Göttingen Germany

6. Rudolf Peierls centre for Theoretical Physics University of Oxford Oxford OX1 3PU United Kingdom

7. Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China

Abstract

AbstractTurbulent flows are observed in low‐Reynolds active fluids, which display similar phenomenology to the classical inertial turbulence but are of a different nature. Understanding the dependence of this new type of turbulence on dimensionality is a fundamental challenge in non‐equilibrium physics. Real‐space structures and kinetic energy spectra of bacterial turbulence are experimentally measured from two to three dimensions. The turbulence shows three regimes separated by two critical confinement heights, resulting from the competition of bacterial length, vortex size and confinement height. Meanwhile, the kinetic energy spectra display distinct universal scaling laws in quasi‐2D and 3D regimes, independent of bacterial activity, length, and confinement height, whereas scaling exponents transition in two steps around the critical heights. The scaling behaviors are well captured by the hydrodynamic model we develop, which employs image systems to represent the effects of confining boundaries. The study suggests a framework for investigating the effect of dimensionality on non‐equilibrium self‐organized systems.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3