Affiliation:
1. Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
2. Department of Biological Sciences, Columbia University, New York, NY 10027
Abstract
Macropinocytosis is an actin-dependent mode of nonselective endocytosis that mediates the uptake of extracellular fluid-phase cargoes. It is now well recognized that tumor cells exploit macropinocytosis to internalize macromolecules that can be catabolized and used to support cell growth and proliferation under nutrient-limiting conditions. Therefore, the identification of molecular mechanisms that control macropinocytosis is fundamental to the understanding of the metabolic adaptive landscape of tumor cells. Here, we report that the acetyl-CoA–producing enzyme, ATP citrate lyase (ACLY), is a key regulator of macropinocytosis and describes a heretofore-unappreciated association of ACLY with the actin cytoskeleton. The cytoskeletal tethering of ACLY is required for the spatially defined acetylation of heterodimeric actin capping protein, which we identify as an essential mediator of the actin remodeling events that drive membrane ruffling and macropinocytosis. Furthermore, we identify a requirement for mitochondrial-derived citrate, an ACLY substrate, for macropinocytosis, and show that mitochondria traffic to cell periphery regions juxtaposed to plasma membrane ruffles. Collectively, these findings establish a mode of metabolite compartmentalization that supports the spatiotemporal modulation of membrane–cytoskeletal interactions required for macropinocytosis by coupling regional acetyl-CoA availability with dynamic protein acetylation.
Funder
HHS | NIH | National Cancer Institute
DHAC | National Health and Medical Research Council
Publisher
Proceedings of the National Academy of Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献