Sterically driven current reversal in a molecular motor model

Author:

Albaugh Alex12,Gu Geyao1,Gingrich Todd R.1ORCID

Affiliation:

1. Department of Chemistry, Northwestern University, Evanston, IL 60208

2. Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202

Abstract

Simulations can help unravel the complicated ways in which molecular structure determines function. Here, we use molecular simulations to show how slight alterations of a molecular motor’s structure can cause the motor’s typical dynamical behavior to reverse directions. Inspired by autonomous synthetic catenane motors, we study the molecular dynamics of a minimal motor model, consisting of a shuttling ring that moves along a track containing interspersed binding sites and catalytic sites. The binding sites attract the shuttling ring while the catalytic sites speed up a reaction between molecular species, which can be thought of as fuel and waste. When that fuel and waste are held in nonequilibrium steady-state concentrations, the free energy from the reaction drives directed motion of the shuttling ring along the track. Using this model and nonequilibrium molecular dynamics, we show that the shuttling ring’s direction can be reversed by simply adjusting the spacing between binding and catalytic sites on the track. We present a steric mechanism behind the current reversal, supported by kinetic measurements from the simulations. These results demonstrate how molecular simulation can guide future development of artificial molecular motors.

Funder

Gordon and Betty Moore Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Limits on the Precision of Catenane Molecular Motors: Insights from Thermodynamics and Molecular Dynamics Simulations;Journal of Chemical Theory and Computation;2023-12-21

2. Sterically driven current reversal in a molecular motor model;Proceedings of the National Academy of Sciences;2023-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3